Filter Problems

Showing 1 to 20 of 103 entries

A cat tries to catch a mouse in labyrinths A, B, and C. The cat walks first, beginning with the node marked with the letter “K”. Then the mouse $($ from the node “M”$)$ moves, then again the cat moves, etc. From any node the cat and mouse go to any adjacent node. If at some point the cat and mouse are in the same node, then the cat eats the mouse.

Can the cat catch the mouse in each of the cases A, B, C?

$\\$

$\\$

A B C

The function F is given on the whole real axis, and for each x the equality holds: F $(x + 1)$ F $(x)$ + F $(x + 1)$ + 1 = 0.

Prove that the function F can not be continuous.

There are 68 coins, and it is known that any two coins differ in weight. With 100 weighings on a two-scales balance without weights, find the heaviest and lightest coin.

Decipher the following puzzle. All the numbers indicated by the letter E, are even (not necessarily equal); all the numbers indicated by the letter O are odd (also not necessarily equal).

On an island live knights who always tell the truth, and liars who always lie. A traveler met three islanders and asked each of them: “How many knights are among your companions?”. The first one answered: “Not one.” The second one said: “One.” What did the third man say?

An investigation is being conducted into the case of a stolen mustang. There are three suspects – Bill, Joe and Sam. At the trial, Sam said that the mustang was stolen by Joe. Bill and Joe also testified, but what they said, no one remembered, and all the records were lost. In the course of the trial it became clear that only one of the defendants had stolen the Mustang, and that only he had given a truthful testimony. So who stole the mustang?

In the language of the Ancient Tribe, the alphabet consists of only two letters: M and O. Two words are synonyms, if one can be obtained by from the other by a$)$ the deletion of the letters MO or OOMM, b$)$ adding in any place the letter combination of OM. Are the words OMM and MOO synonyms in the language of the Ancient Tribe?

Burbot-Liman. Find the numbers that, when substituted for letters instead of the letters in the expression NALIM × 4 = LIMAN, fulfill the given equality (different letters correspond to different numbers, but identical letters correspond to identical numbers)

Professions of family members. In the Semenov family there are 5 people: a husband, a wife, their son, a husband’s sister and the father of his wife. They all work. One is an engineer, another is a lawyer, the third is a mechanic, the fourth is an economist, the fifth is a teacher. Here’s what else is known about them. The lawyer and the teacher are not blood relatives. The mechanic is a good athlete. He followed in the footsteps of an economist and played football for the national team of the plant. The engineer is older than his brother’s wife, but younger than the teacher. The economist is older than the mechanic. What are the professions of each member of the Semenov family?

The vendor has a cup weighing scales with unequal shoulders and weights. First he weighs the goods on one cup, then on the other, and takes the average weight. Is he deceiving customers?

Harry, Jack and Fred were seated so that Harry could see Jack and Fred, Jack could only see Fred, and Fred could not see anyone. Then, from a bag which contained two white caps and three black caps $($ the contents of the bag were known to the boys $)$, they took out and each put on a cap of an unknown color, and the other two hats remained in the sack. Harry said that he could not determine the color of his hat. Jack heard Harry’s statement and said that he did not have enough information to determine the color of his hat. Could Fred on the basis of these answers determine the color of his cap?

Fred and George are twin brothers. One of them always tells the truth, and the other always lies. You can ask only one question to one of the brothers, to which he will answer “yes” or “no”. Try to find out the name of each of the twins.

A kindergarten used cards for teaching children how to read: on some, the letter “MA” are written, on the rest – “DA”. Each child took three cards and began to compose words from them. It turned out that the word “MAMA” was created from the cards by 20 children, the word “DADA” by 30 children, and the word “MADA” by 40 children. How many children all had 3 of the same cards?

There are 6 locked suitcases and 6 keys for them. It is not known which keys are for which suitcase. What is the smallest number of attempts do you need in order to open all the suitcases? How many attempts would you need if there are 10 suitcases and keys instead of 6?

48 blacksmiths must shoe 60 horses. Each blacksmith spends 5 minutes on one horseshoe. What is the shortest time they should spend on the work? $($ Note that a horse can not stand on two legs. $)$

Decipher the following rebus. Despite the fact that only two figures are known here, and all the others are replaced by asterisks, the question can be restored.$\\$

A traveller rents a room in an inn for a week and offers the innkeeper a chain of seven silver links as payment – one link per day, with the condition that they will be payed everyday. The innkeeper agrees, with the condition that the traveller can only cut one of the links. How did the traveller manage to pay the innkeeper?

Replace each letter in the diagram with a digit from 1 to 9 so that all the inequalities are satisfied,

and then arrange the letters in numerical order of their numerical values. What word did you get?

In a certain kingdom there were 32 knights. Some of them were vassals of others $($ a vassal can have only one suzerain, and the suzerain is always richer than his vassal $)$. A knight with at least four vassals is given the title of Baron. What is the largest number of barons that can exist under these conditions?

$($ In the kingdom the following law is enacted: ” the vassal of my vassal is not my vassal”$)$.

A game with 25 coins. In a row there are 25 coins. For a turn it is allowed to take one or two neighbouring coins. The player who has nothing to take loses.